Investigación
En colaboración con destacadas empresas farmacéuticas y biotecnológicas, Renishaw está desarrollando dispositivos de infusión de fármacos implantables para el tratamiento de enfermedades graves del sistema nervioso central.
Haciendo avanzar la precisión en la infusión de fármacos
En la actualidad, Renishaw está trabajando en colaboración con destacadas empresas farmacéuticas y biotecnológicas para garantizar que las nuevas terapias que prometen mucho en el laboratorio dispongan de un método de infusión cuando se lleven a cabo los ensayos clínicos.
Históricamente, la complejidad de esta fase preparatoria ha dado lugar a que muchos programas terapéuticos con un gran potencial no hayan alcanzado las dianas designadas.
En varios casos clave, este fracaso se puede atribuir, por lo menos en parte, a la incapacidad de proporcionar una precisión constante en la infusión y contención del líquido de infusión en los volúmenes de referencia.
Más información
Actualmente Renishaw está desarrollando y sometiendo a pruebas una gama de dispositivos de infusión de nueva generación que están dando muestras de repetibilidad en los patrones de infusión, a raíz de la cual se ha observado una eficacia constante de los tratamientos.
Además de ofrecer la incorporación de esta cartera de avances en programas terapéuticos y de investigación académica, Renishaw ofrece consultoría y un servicio de diseño asociado para permitir a las compañías biotecnológicas y farmacéuticas especificar con precisión los sistemas de infusión necesarios para la administración óptima de sus tratamientos.
Biblioteca con revisión científica externa
Los productos neurológicos de Renishaw aparecen mencionados en muchas publicaciones con revisión científica externa, entre ellas las que se enumeran a continuación. Estos artículos corroboran la efectividad del uso de nuestros productos en neurocirugía funcional.
Producto | Aplicación | Autores | Año | Título | Enlace DOI |
Módulo de registro de pacientes sin marcos neurolocate™ | SEEG | Cardinale F. et al. | 2017 | A new tool for touch-free patient registration for robotic-assisted intercranial surgery: application accuracy from a phantom study and a retrospective surgical series | DOI |
software neuroinspire™ | ECP | Geevarghese, R., et al. | 2016 | Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review | DOI |
Administración de fármacos | Administración de fármacos | Barua N. U. et al. | 2016 | A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma | DOI |
Robot estereotáctico neuromate ® | ECP | Kajita, Y. et al. | 2015 | Installation of a neuromate robot for stereotactic surgery: efforts to conform to Japanese specifications and an approach for clinical use | DOI |
Robot estereotáctico neuromate ® | ECP | Von Langsdorf, D. et al. | 2015 | In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. | DOI |
Robot estereotáctico neuromate ® | Porfirio, B. et al. | 2015 | Donor-specific anti-HLA antibodies in Huntington's disease recipients of human fetal striatal grafts | DOI | |
Robot estereotáctico neuromate ® | SEEG | Cardinale, F. | 2015 | Stereotactic robotic application accuracy is very high in 'in vivo' procedures | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Paganini M. et al. | 2013 | Fetal striatal grafting slows motor and cognitive decline of Huntington’s disease. | DOI |
Robot estereotáctico neuromate ® | SEEG | Abhinav, K. et al. | 2013 | Use of robot-guided stereotactic placement of intracerebral electrodes for investigation of focal epilepsy: initial experience in the UK | DOI |
Robot estereotáctico neuromate ® | Administración de fármacos | Barua N. U. et al. | 2013 | Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochirurgica | |
Robot estereotáctico neuromate ® | SEEG | Cardinale F. et al. | 2013 | Estéreo-electroencefalografía: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures. Neurosurgery, 72(3):353-366 | DOI |
Robot estereotáctico neuromate ® | SEEG | Sieradzan K. et al. | 2013 | Robotic stereo EEG in epilepsy surgery assessment, Journal of Neurology, Neurosurgery and Psychiatry, 84(e2):46 | DOI |
Robot estereotáctico neuromate ® | Biopsia | Dellaretti M. et al. | 2012 | Stereotactic Biopsy for Brainstem Tumors: Comparison of Transcerebellar with Transfrontal Approach, Stereotactic and Functional Neurosurgery, 90:79-83 | DOI |
Robot estereotáctico neuromate ® | Biopsia | Dellaretti M. et al. | 2012 | Correlation between magnetic resonance imaging findings and histological diagnosis of intrinsic brainstem lesions in adults, Neuro-Oncology, 14(3):381-385 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2012 | Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. Journal of Neurosurgery: Pediatrics, 9(3):290-300 | DOI |
neuroguide ® - Sistema de posicionamiento de electrodos para ECP | ECP | Khan, S. et al. | 2010 | A magnetic resonance imaging-directed method for transventricular targeting of midline structures for deep brain stimulation using implantable guide tubes. Neurosurgery, 66(6 Suppl Operative):234-7 | DOI |
Robot estereotáctico neuromate ® | Biopsia | Haegelen, C. et al. | 2010 | Stereotactic robot-guided biopsies of brain stem lesions: Experience with 15 cases. | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Gallina, P. et al. | 2010 | Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation. Experimental neurology, 222(1):30-41 | DOI |
Robot estereotáctico neuromate ® | SEEG | Afif, A. et al. | 2010 | Anatomofunctional organization of the insular cortex: A study using intracerebral electrical stimulation in epileptic patients. Epilepsia, 51(11):2305-15 | DOI |
Robot estereotáctico neuromate ® | SEEG | Afif, A. et al. | 2010 | Middle short gyrus of the insula implicated in speech production: Intracerebral electric stimulation of patients with epilepsy. Epilepsia, 51(2):206-13 | DOI |
neuroguide ® - Sistema de posicionamiento de electrodos para ECP | ECP | Khan, S. et al. | 2009 | High frequency stimulation of the mamillothalamic tract for the treatment of resistant seizures associated with hypothalamic hamartoma. Epilepsia, 50(6):1608-11 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Narayana, S. et al. | 2009 | A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease. American journal of speech-language pathology, 18(2):146-61 | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Gallina, P. et al. | 2008 | Development of human striatal anlagen after transplantation in a patient with Huntington's disease. Experimental neurology, 213(1):241-4 | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Gallina, P. et al. | 2008 | Human fetal striatal transplantation in Huntington's disease: a refinement of the stereotactic procedure. Stereotactic and functional neurosurgery, 86(5):308-13 | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Paganini M. et al. | 2008 | Fetal striatal grafting slows motor and cognitive decline of Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry | DOI |
Robot estereotáctico neuromate ® | Injerto celular | Derrey, S. et al. | 2008 | Management of cystic craniopharyngiomas with stereotactic endocavitary irradiation. Neurosurgery, 63(6):1045-52 | DOI |
Robot estereotáctico neuromate ® | ECP | Breit, S. et al. | 2008 | Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery, 62(2 Suppl):840-52 | DOI |
Robot estereotáctico neuromate ® | Endoscopia | Dorfmüller, G. et al. | 2008 | [Surgical disconnection of hypothalamic hamartomas]. Neuro-Chirurgie, 54(3):315-9 | DOI |
Robot estereotáctico neuromate ® | General | Xia, T. et al. | 2008 | An integrated system for planning, navigation and robotic assistance for skull base surgery. The international journal of medical robotics + computer assisted surgery, 4(4):321-3 0 | DOI |
Robot estereotáctico neuromate ® | SEEG | Afif, A. et al. | 2008 | Safety and usefulness of insular depth electrodes implanted via an oblique approach in patients with epilepsy. Neurosurgery, 62(5 Suppl 2):ONS471-9 | DOI |
Robot estereotáctico neuromate ® | SEEG | Afif, A. et al. | 2008 | Middle short gyrus of the insula implicated in pain processing. Pain, 138(3):546-55 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2008 | [Presurgical evaluation of intractable epilepsy using stereo- electro-encephalography methodology: principles, technique and morbidity]. Neuro-Chirurgie, 54(3):367-73 | DOI |
Robot estereotáctico neuromate ® | SEEG | Bulteau, C. et al. | 2008 | [Epilepsy surgery during infancy and early childhood in France]. Neuro-Chirurgie, 54(3):342-6 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2008 | Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia, 49(1):65-72 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Laird, A. et al. | 2008 | Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage, 41(2):424-36 | DOI |
neuroguide ® - Sistema de posicionamiento de electrodos para ECP | ECP | Patel, N.K. et al. | 2007 | Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery, 61(5 Suppl 2):358-65 | DOI |
Robot estereotáctico neuromate ® | Endoscopia | Procaccini, E. et al. | 2006 | Surgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approach. Neurosurgery, 59(4 Suppl 2): ONS336-44 | DOI |
Robot estereotáctico neuromate ® | General | Varma, T. et al. | 2006 | Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. The international journal of medical robotics + computer assisted surgery,2(2):107-13 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2006 | Stereo-EEG in children. Child's nervous system, 22(8):766- 78 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Fox, P. et al. | 2006 | Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Human brain mapping, 27(6):478-87 | DOI |
Robot estereotáctico neuromate ® | ECP | Haegelen, C. et al. | 2005 | Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method. Surgical and radiologic anatomy, 27(5):389-94 | DOI |
Robot estereotáctico neuromate ® | ECP | Sauleau, P. et al. | 2005 | Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson's disease. Journal of neurology, 252(4):457-64 | DOI |
Robot estereotáctico neuromate ® | General | Rossi, A. et al. | 2005 | A telerobotic haptic system for minimally invasive stereotactic neurosurgery. The international journal of medical robotics + computer assisted surgery, 1(2):64-75 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2005 | Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. Journal of neurosurgery, 103(4 Suppl): 333-43 | DOI |
Robot estereotáctico neuromate ® | SEEG | Cossu, M. et al. | 2005 | Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery, 57(4):706-18 | DOI |
Robot estereotáctico neuromate ® | General | Zamorano, L. et al. | 2004 | Robotics in neurosurgery: state of the art and future technological challenges. The international journal of medical robotics + computer assisted surgery, 1(1):7-22 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Fox, P. et al. | 2004 | Column-based model of electric field excitation of cerebral cortex. Human brain mapping, 22(1):1-14 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Lancaster, J. L. et al. | 2004 | Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Human brain mapping, 22(4):329-40 | DOI |
Robot estereotáctico neuromate ® | ECP | Varma, T. et al. | 2003 | Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotactic and functional neurosurgery, 80(1-4):132-5 | DOI |
Robot estereotáctico neuromate ® | ECP | Littlechild, P. et al. | 2003 | Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotactic and functional neurosurgery, 80(1-4):82-7 | DOI |
Robot estereotáctico neuromate ® | Estimulación magnética transcraneal | Lee, J. S. et al. | 2003 | Positron emission tomography during transcranial magnetic stimulation does not require μ-metal shielding, NeuroImage, 19(4):1812-9 | DOI |
Robot estereotáctico neuromate ® | General | Li, Q. et al. | 2002 | The application accuracy of the NeuroMate robot ⬜ A quantitative comparison with frameless and frame-based surgical localization systems. Computer aided surgery, 7(2):90-8 | DOI |
Renishaw Neuro Solutions Limited – Avisos legales y sobre confidencialidad. Hacer clic aquí