跳轉瀏覽

目前本網頁沒有您所用語言的版本。您可使用 Google 翻譯來瀏覽 自動翻譯。我們並不負責提供此服務,我們也未檢查翻譯結果。
如果您希望得到更多協助,請聯絡我們

Research

In collaboration with leading pharmaceutical and biotechnology companies, Renishaw is working on developing implantable therapeutic delivery devices for the treatment of serious Central Nervous System (CNS) diseases.

Advancing precision delivery of therapeutics

neurosurgery hero image

Renishaw is currently working with leading biotechnology and pharmaceutical companies to ensure that therapeutics that are showing great promise in the laboratory, have a means of delivery when clinical trials are performed.

The complexities of taking this step have historically led to therapy programmes with great potential failing to hit designated end-points.

In several key cases these failures can at least be partly attributed to an inability to be consistent in the precise delivery and containment of the infusate in targeted volumes.

Further information

Renishaw is currently developing and testing a range of next-generation delivery devices that are demonstrating repeatability in infusion patterns, leading to consistency in observed therapy efficacy.

In addition to offering to incorporate this development portfolio into therapeutic and academic research programmes, Renishaw offers a consultancy and associated design service to allow biotechnology and pharmaceutical companies to precisely specify delivery systems for optimal delivery of their therapeutics.

Peer-reviewed library

Renishaw's neurological products have featured in many peer-reviewed publications, including those below. These articles support the effective use of our products in functional neurosurgery.

Product

Application

Authors

Year

Title

DOI link

neurolocate™ frameless registration moduleSEEGCardinale, F. et al 2017A new tool for touch-free patient registration for robotic-assisted intercranial surgery: application accuracy from a phantom study and a retrospective surgical seriesDOI
neuroinspire™ softwareDBSGeevarghese, R. et al2016Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic reviewDOI
Drug deliveryDrug deliveryBarua, N.U. et al2016A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastomaDOI
neuromate ® stereotactic robotDBSKajita, Y. et al2015Installation of a neuromate robot for stereotactic surgery: efforts to conform to Japanese specifications and an approach for clinical useDOI
neuromate ® stereotactic robotDBS von Langsdorf, D. et al 2015In vivo measurement of the frame-based application accuracy of the neuromate neurosurgical robotDOI
neuromate ® stereotactic robot Porfirio, B. et al 2015 Donor-specific anti-HLA antibodies in Huntington's disease recipients of human fetal striatal graftsDOI
neuromate ® stereotactic robotSEEG Cardinale, F. 2015 Stereotactic robotic application accuracy is very high in 'in vivo' proceduresDOI
neuromate ® stereotactic robotCell graftPaganini, M. et al 2013 Fetal striatal grafting slows motor and cognitive decline of Huntington's disease DOI
neuromate ® stereotactic robotSEEGAbhinav, K. et al2013Use of robot-guided stereotactic placement of intracerebral electrodes for investigation of focal epilepsy: initial experience in the UKDOI

neuromate ® stereotactic robot

Drug delivery

Barua, N.U. et al

2013

Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochirurgica

DOI

neuromate ® stereotactic robot SEEG Cardinale, F. et al 2013 Stereoelectroencephalography: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures. Neurosurgery, 72(3):353-366DOI
neuromate ® stereotactic robot SEEG Sieradzan, K. et al 2013 Robotic stereo EEG in epilepsy surgery assessment, Journal of Neurology, Neurosurgery and Psychiatry, 84(e2):46DOI
neuromate ® stereotactic robot Biopsy Dellaretti, M. et al 2012 Stereotactic Biopsy for Brainstem Tumors: Comparison of Transcerebellar with Transfrontal Approach, Stereotactic and Functional Neurosurgery, 90:79-83DOI
neuromate ® stereotactic robot Biopsy Dellaretti, M. et al 2012 Correlation between magnetic resonance imaging findings and histological diagnosis of intrinsic brainstem lesions in adults, Neuro-Oncology, 14(3):381-385DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2012 Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. Journal of Neurosurgery: Pediatrics, 9(3):290-300DOI
neuroguide ® - DBS electrode delivery system DBS Khan, S. et al 2010 A magnetic resonance imaging-directed method for transventricular targeting of midline structures for deep brain stimulation using implantable guide tubes. Neurosurgery, 66(6 Suppl Operative):234-7DOI
neuromate ® stereotactic robot Biopsy Haegelen, C. et al 2010 Stereotactic robot-guided biopsies of brain stem lesions: Experience with 15 cases. DOI
neuromate ® stereotactic robot Cell graft Gallina, P. et al 2010 Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation. Experimental neurology, 222(1):30-41DOI
neuromate ® stereotactic robot SEEG Afif, A. et al 2010 Anatomofunctional organization of the insular cortex: A study using intracerebral electrical stimulation in epileptic patients. Epilepsia, 51(11):2305-15DOI
neuromate ® stereotactic robot SEEG Afif, A. et al 2010 Middle short gyrus of the insula implicated in speech production: Intracerebral electric stimulation of patients with epilepsy. Epilepsia, 51(2):206-13DOI
neuroguide ® - DBS electrode delivery system DBS Khan, S. et al 2009 High frequency stimulation of the mamillothalamic tract for the treatment of resistant seizures associated with hypothalamic hamartoma. Epilepsia, 50(6):1608-11DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Narayana, S. et al 2009 A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease. American journal of speech-language pathology, 18(2):146-61DOI
neuromate ® stereotactic robot Cell graft Gallina, P. et al 2008 Development of human striatal anlagen after transplantation in a patient with Huntington's disease. Experimental neurology, 213(1):241-4DOI
neuromate ® stereotactic robot Cell graft Gallina, P. et al 2008 Human fetal striatal transplantation in Huntington's disease: a refinement of the stereotactic procedure. Stereotactic and functional neurosurgery, 86(5):308-13DOI
neuromate ® stereotactic robot Cell graft Paganini, M. et al 2008 Fetal striatal grafting slows motor and cognitive decline of Huntington's disease. Journal of Neurology, Neurosurgery and PsychiatryDOI
neuromate ® stereotactic robot Cell graft Derrey, S. et al 2008 Management of cystic craniopharyngiomas with stereotactic endocavitary irradiation. Neurosurgery, 63(6):1045-52DOI
neuromate ® stereotactic robot DBS Breit, S. et al 2008 Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery, 62(2 Suppl):840-52DOI
neuromate ® stereotactic robot Endoscopy Dorfmüller, G. et al 2008 [Surgical disconnection of hypothalamic hamartomas]. Neuro- Chirurgie, 54(3):315-9DOI
neuromate ® stereotactic robot General Xia, T. et al 2008 An integrated system for planning, navigation and robotic assistance for skull base surgery. The international journal of medical robotics + computer assisted surgery, 4(4):321-3 0 DOI
neuromate ® stereotactic robot SEEG Afif, A. et al 2008 Safety and usefulness of insular depth electrodes implanted via an oblique approach in patients with epilepsy.
Neurosurgery, 62(5 Suppl 2):ONS471-9
DOI
neuromate ® stereotactic robot SEEG Afif, A. et al 2008 Middle short gyrus of the insula implicated in pain processing.
Pain, 138(3):546-55
DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2008 [Presurgical evaluation of intractable epilepsy using stereo- electro-encephalography methodology: principles, technique and morbidity]. Neuro-Chirurgie, 54(3):367-73DOI
neuromate ® stereotactic robot SEEG Bulteau, C. et al 2008 [Epilepsy surgery during infancy and early childhood in France]. Neuro-Chirurgie, 54(3):342-6DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2008 Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia, 49(1):65-72DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Laird, A. et al 2008 Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage, 41(2):424-36DOI
neuroguide ® - DBS electrode delivery system DBS Patel, N.K. et al 2007 Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery, 61(5 Suppl 2):358-65DOI
neuromate ® stereotactic robot Endoscopy Procaccini, E. et al 2006 Surgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approach. Neurosurgery, 59(4 Suppl 2):
ONS336-44
DOI
neuromate ® stereotactic robot General Varma, T. et al 2006 Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. The international journal of medical robotics + computer assisted surgery,2(2):107-13DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2006 Stereo-EEG in children. Child's nervous system, 22(8):766- 78DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Fox, P. et al 2006 Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Human brain mapping, 27(6):478-87DOI
neuromate ® stereotactic robot DBS Haegelen, C. et al 2005 Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method.
Surgical and radiologic anatomy, 27(5):389-94
DOI
neuromate ® stereotactic robot DBS Sauleau, P. et al 2005 Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson's disease. Journal of neurology, 252(4):457-64DOI
neuromate ® stereotactic robot General Rossi, A. et al 2005 A telerobotic haptic system for minimally invasive stereotactic neurosurgery. The international journal of medical robotics + computer assisted surgery, 1(2):64-75DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2005 Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. Journal of neurosurgery, 103(4 Suppl):
333-43
DOI
neuromate ® stereotactic robot SEEG Cossu, M. et al 2005 Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery, 57(4):706-18DOI
neuromate ® stereotactic robot General Zamorano, L. et al 2004 Robotics in neurosurgery: state of the art and future technological challenges. The international journal of medical robotics + computer assisted surgery, 1(1):7-22DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Fox, P. et al 2004 Column-based model of electric field excitation of cerebral cortex. Human brain mapping, 22(1):1-14DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Lancaster, J. L. et al 2004 Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Human brain mapping, 22(4):329-40DOI
neuromate ® stereotactic robot DBS Varma, T. et al 2003 Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotactic and functional neurosurgery, 80(1-4):132-5DOI
neuromate ® stereotactic robot DBS Littlechild, P. et al 2003 Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotactic and functional neurosurgery, 80(1-4):82-7DOI
neuromate ® stereotactic robot Transcranial magnetic stimulation Lee, J. S. et al 2003 Positron emission tomography during transcranial magnetic stimulation does not require μ-metal shielding, NeuroImage, 19(4):1812-9DOI
neuromate ® stereotactic robot General Li, Q. et al 2002 The application accuracy of the NeuroMate robot ⬜ A quantitative comparison with frameless and frame-based surgical localization systems. Computer aided surgery, 7(2):90-8DOI

Renishaw Neuro Solutions Limited – Legal and Privacy Notices. Click here