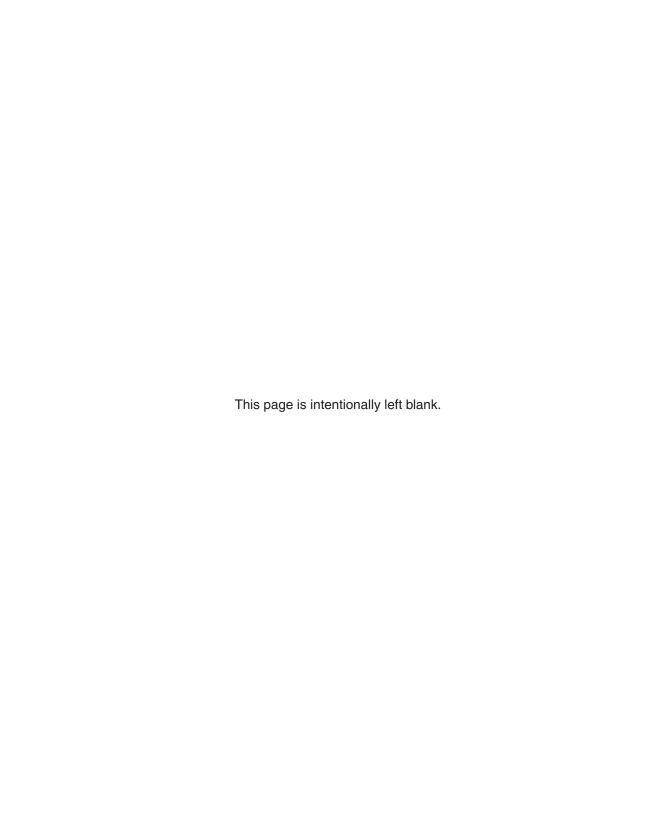


OTS optical tool setter

Compliance information for this product is available by scanning the QR code or visiting www.renishaw.com/mtpdoc


Contents

Before you begin	
Trade marks	
Warranty	
CNC machines	
Care of the probe	
Patents	
OTS software notices	
OTS software licensing agreement	
Intended use	
Safety	
Information to the user	
Information to the machine supplier/ installer	
Information to the equipment installer	
Equipment operation	
Optical safety	
OTS basics	
Introduction	
OTS types	
Getting started	
Modulated transmission	
Multiple probe system	
Single probe system	
Probe configuration	
Opti-Logic™	
Trigger Logic™	
Operation	
Software routines	
Achievable set-up tolerances	
Recommended rotating tool feedrates	
Probe modes	
Configurable settings	
Switch-on method	
Optical start configuration	
Switch-off method	
Enhanced trigger filter	
Optical power	

OTS dimensions	2-7
OTS specification	2-8
Typical battery life	2-9
System installation	
interface	
Operating envelope	3-1
Positioning the OMI-2, OMI-2T, OMI-2H interface, or OMM-2 receiver	3-2
Performance envelope when using the OTS with OMI-2, OMI-2T, OMI-2H interface, or OMN receiver.	
Typical probe system with OMM-2C receiver with OSI / OSI-D interface	
Operating envelope	
Positioning the OMM-2C receiver	
Performance envelope when using the OTS with a OMM-2C receiver	
Preparing the OTS for use	
Fitting the stylus, break stem and captive link	
Installing the ½AA batteries	
Installing the AA batteries	
Mounting the OTS on a machine table	
Dowel pins	
Aligning the modules	
Stylus level setting	
Side-to-side level adjustment	
Front-to-back level adjustment	
Square stylus only	
Coarse rotational adjustment	
Fine rotational adjustment	
Calibrating the OTS	
Why calibrate a probe?	3-15
Probe configuration	4-1
Configuring the probe using the Probe Setup app	4-1
Using Opti-Logic™	4-1
Using Trigger Logic™	4-2
Reviewing the probe settings	4-2
Probe settings record	4-3
Changing the probe settings	4-4
Master reset function	4-6
Operating mode	4-8
Probe status LED	4-8

Maintenance	5-1
Maintenance	5-1
Cleaning the probe	5-1
Changing the ½AA batteries	5-2
Changing the AA batteries	5-3
Battery types	5-4
Routine maintenance	5-5
Eyelid removal/replacement	5-6
Fault-finding	6-1
Parts list	7-

Before you begin

Trade marks

Google Play and the Google Play logo are trademarks of Google LLC.

Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc., registered in the U.S. and other countries.

Warranty

Unless you and Renishaw have agreed and signed a separate written agreement, the equipment and/or software are sold subject to the Renishaw Standard Terms and Conditions supplied with such equipment and/or software, or available on request from your local Renishaw office.

Renishaw warrants its equipment and software for a limited period (as set out in the Standard Terms and Conditions), provided that they are installed and used exactly as defined in associated Renishaw documentation. You should consult these Standard Terms and Conditions to find out the full details of your warranty.

Equipment and/or software purchased by you from a third-party supplier is subject to separate terms and conditions supplied with such equipment and/or software. You should contact your third-party supplier for details.

CNC machines

CNC machine tools must always be operated by fully-trained personnel in accordance with the manufacturer's instructions.

Care of the probe

Keep system components clean and treat the unit as a precision tool.

Patents

None applicable.

OTS software notices

This OTS product includes embedded software (firmware) to which the following notices apply:

US government notice

NOTICE TO UNITED STATES GOVERNMENT CONTRACT AND PRIME CONTRACT CUSTOMERS

This software is commercial computer software that has been developed by Renishaw exclusively at private expense. Notwithstanding any other lease or licence agreement that may pertain to, or accompany the delivery of, this computer software, the rights of the United States Government and/or its prime contractors regarding its use, reproduction and disclosure are as set forth in the terms of the contract or subcontract between Renishaw and the United States Government, civilian federal agency or prime contractor respectively. Please consult the applicable contract or subcontract and the software licence incorporated therein, if applicable, to determine your exact rights regarding use, reproduction and/or disclosure.

Renishaw software EULA

Renishaw software is licensed in accordance with the Renishaw licence at: www.renishaw.com/legal/softwareterms

OTS software licensing agreement

This OTS product includes the following third-party software:

BSD 3-Clause Licence

This product's firmware has been developed by Renishaw with the use of the Microchip libraries, under the following licensing terms:-

This software is developed by Microchip Technology Inc. and its subsidiaries ("Microchip"). Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Microchip's name may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY MICROCHIP "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MICROCHIP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWSOEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(c) Copyright 1999-2013 Microchip Technology, All rights reserved

Intended use

The OTS and OTS-AA are optical tool setting probes that enables automated broken tool detection and rapid measurement of the tool length and diameter of a wide range of tools on small to medium machining centres.

Safety

Information to the user

This product is supplied with either non-rechargeable lithium metal batteries or non-rechargeable batteries that do not contain lithium. Refer to the battery manufacturer's literature for specific battery operating, safety and disposal guidelines.

- Do not attempt to recharge the batteries.
- Replace the batteries only with the specified type.
- Do not mix new and used batteries in the product.
- Do not mix different types or brands of batteries in the product.
- Ensure that all batteries are inserted with the correct polarity in accordance with the instructions in this manual and indicated on the product.
- Do not store the batteries in direct sunlight.
- Do not expose the batteries to water.
- Do not expose the batteries to heat or dispose of the batteries in a fire.
- Avoid forced discharge of the batteries.
- Do not short circuit the batteries.
- Do not disassemble, apply excessive pressure, pierce, deform or subject the batteries to impact
- Do not swallow the batteries.
- Keep the batteries out of the reach of children.
- If the batteries are swollen or damaged do not use them in the product and exercise caution when handling them.
- Dispose of waste batteries in accordance with your local environmental and safety laws.

Ensure that you comply with international and national battery transport regulations when transporting the batteries or this product with the batteries inserted. Lithium metal batteries are classified as dangerous goods for transportation and require labelling and packaging in accordance with the dangerous goods regulations before being offered for transportation. To reduce the risk of shipment delays, should you need to return this product to Renishaw for any reason, do not return any batteries.

In all applications involving the use of machine tools, eye protection is recommended.

The OTS has a glass window. Handle with care if broken to avoid injury.

Information to the machine supplier/installer

It is the machine supplier's responsibility to ensure that the user is made aware of any hazards involved in operation, including those mentioned in Renishaw product literature, and to ensure that adequate guards and safety interlocks are provided.

If the probe system fails, the probe signal may falsely indicate a probe seated condition. Do not rely on probe signals to halt the movement of the machine.

Information to the equipment installer

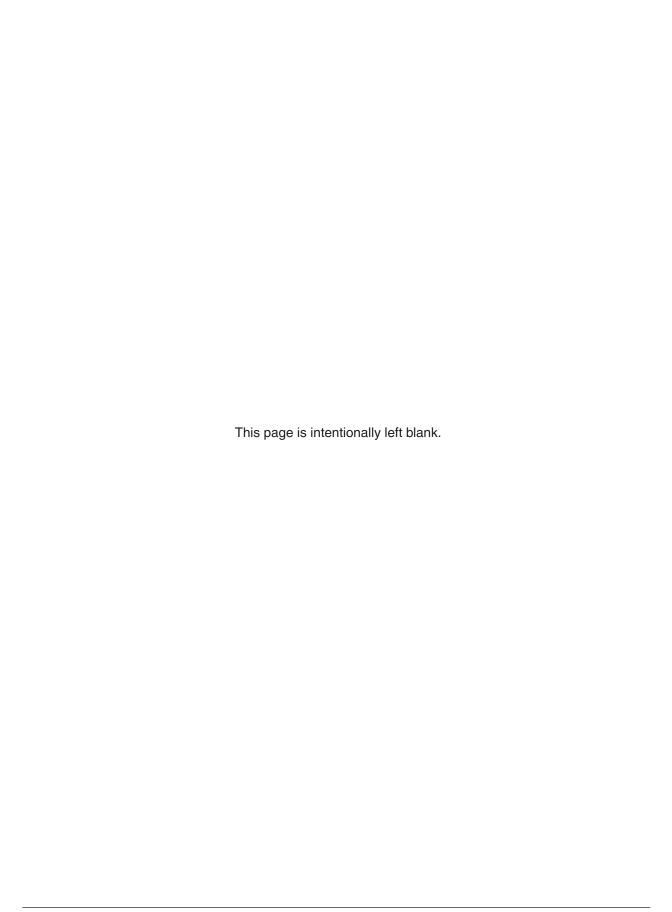
All Renishaw equipment is designed to comply with the relevant UK, EU and FCC regulatory requirements. It is the responsibility of the equipment installer to ensure that the following guidelines are adhered to, in order for the product to function in accordance with these regulations:

- Any interface MUST be installed in a position away from any potential sources of electrical noise, (for example power transformers, servo drives).
- All 0 V/ground connections should be connected to the machine "star point" (the "star point" is a single
 point return for all equipment ground and screen cables). This is very important and failure to adhere
 to this can cause a potential difference between grounds.
- All screens must be connected as outlined in the user instructions.
- Cables must not be routed alongside high current sources (for example, motor power supply cables), or be near high-speed data lines.
- Cable lengths should always be kept to a minimum.

Equipment operation

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Optical safety


This product contains LEDs that emit both visible and invisible light.

OTS is ranked Risk Group: Exempt (safe by design).

The product was evaluated and classified using the following standard:

BS EN 62471:2008 The photobiological safety of lamps and lamp systems.

Renishaw recommends that you do not stare at or look directly into any LED device, irrespective of its risk classification

OTS basics

Introduction

The OTS is a tool setter probe with optical signal transmission, suitable for use on small to medium machining centres. It is designed to resist optical interference, false triggering and shock.

OTS types

The OTS is available in two versions; one with ½ AA batteries and the other with AA batteries. This allows the use of a common battery type for both the OTS and the spindle probe.

OTS with ½ AA batteries with an OMP40-2 / OMP400 / OLP40. or OTS with AA batteries with an OMP60 / OMP600.

Both versions work in conjunction with any modulated spindle probe.

Getting started

A multicolour probe LED provides visual indication of status and selected probe settings.

For example:

- Optical power
- Probe status triggered or seated
- Battery condition

For information about battery insertion or removal, see either **page 3-7**, "Installing the AA batteries" or **page 3-6**, "Installing the ½AA batteries".

On insertion of the batteries, the LEDs will begin to flash (for more information, see **page 4-2**, "Reviewing the probe settings").

Modulated transmission

To minimise the effects of light interference, the OTS operates using modulated transmission, and must be used with a modulated receiver.

Multiple probe system

OMI-2T or OMI-2H interfaces, or OMM-2 / OMM-2C receiver with OSI / OSI-D interface are the recommended for use with the OTS, as they provide substantially increased resistance to light interference whilst providing the user with greater flexibility to operate a muti-probe system.

The OTS can be configured to use one of three coded start commands, named Probe 1, Probe 2 and Probe 3.

Single probe system

A single OTS can be used with OMI-2, OMI-2T, OMI-2H or OMI-2C interfaces, or OMM-2 / OMM-2C receiver with OSI / OSI-D interface.

NOTE: When used in single probe mode with an OMI-2, or OMM-2 / OMM-2C receiver with OSI / OSI-D interface the OTS must be reconfigured as Probe 1.

Probe configuration

It is recommended that the Probe Setup app is used to configure the probe.

The Probe Setup app simplifies the process of configuring Renishaw machine tool probes compatible with Opti-Logic[™] or Trigger Logic[™].

The app provides clear, step-by-step, visual instructions and video tutorials to guide a user through the process of setting up and configuring a Renishaw machine tool probing system.

The Probe Setup app is available for download on the App Store and Google Play and also from several app stores in China.

or

Opti-Logic™

Opti-Logic is the process of transmitting and receiving data from the app to a Renishaw machine tool probe using pulses of light; for more information, see **page 4-1**, "Configuring the probe using the Probe Setup app".

Trigger Logic™

Trigger Logic™ (for more information, see **page 4-2**, "Reviewing the probe settings") is a method that allows the user to view and select all available mode settings in order to customise a probe to suit a specific application. Trigger Logic is activated by battery insertion and uses a sequence of stylus deflections (triggering) to systematically lead the user through the available choices, observed via the LED display, to allow selection of the required mode options.

Current probe settings can also be reviewed by simply removing the batteries for a minimum of 5 seconds, and then replacing them to activate the Trigger Logic review sequence (for more information, see **page 4-2**, "Reviewing the probe settings").

Operation

The tool is driven in the machine Z axis for tool length measurements and broken tool detection.

Rotating tools are set in the machine's X and Y axes for tool radius offsets.

Screw adjusters allow the stylus to be aligned with the machine's axes.

Software routines

Software routines and software programs for tool setting are available from Renishaw for various machine controllers: see the *Probe software for machine tools – programs and features* data sheet (Renishaw part no. H-2000-2298).

This data sheet can be downloaded from www.renishaw.com/mtp

Achievable set-up tolerances

The tolerances to which tools can be set depend upon the flatness and parallelism of the stylus tip setting. A value of 5 μ m (0.0002 in) front to back and side-to-side is easily achievable over the flat portion of the stylus tip, and 5 μ m (0.0002 in) parallelism is easily achievable with the axes of a square tip stylus. This setting accuracy is sufficient for the majority of tool setting applications.

Recommended rotating tool feedrates

Cutters should be rotated in reverse to the cutting direction. Renishaw tool setting software calculates the spindle speed and axis feedrates automatically using the following information.

First touch – machine spindle rev/min

Rev/min for the first move against the probe stylus:

Diameters below 24 mm: 800 rev/min is used.

Diameters from 24 mm to 127 mm: rev/min is calculated using a surface speed of 60 m/min (197 ft/min).

Diameters above 127 mm: 150 rev/min is used.

First touch - machine feedrate

The feedrate (f) is calculated as follows:

 $f = 0.16 \times \text{rev/min}$ f units mm/min (diameter set). $f = 0.12 \times \text{rev/min}$ f units mm/min (length set).

Second touch - machine feedrate

800 rev/min, 4 mm/min (0.16 in/min) feedrate.

Probe modes

The OTS probe can be in one of three modes.

Standby mode – Probe is waiting for a switch-on signal.

Operational mode – activated by switch-on, the OTS is ready for use.

Configuration mode – Trigger Logic[™] or Opti-Logic[™] may be used to configure the following OTS settings:

- Optical start configuration
- Enhanced trigger filter setting
- Optical power

NOTE: A visual indication of currently selected probe settings is provided on battery insertion, by the multicolour LED located within the probe window (for more information, see **page 4-2**, "Reviewing the probe settings").

Configurable settings

Switch-on method

Typically optical probe systems switch on in less than 0.5 seconds. Refer to the interface installation guide for full details.

Optical start configuration

The OTS can be configured to either Probe 1, Probe 2 or Probe 3 identification. For more information, see **page 4-4**, "Changing the probe settings".

The OTS is factory set to Probe 2 so that it can be used in a system with modulated spindle probes.

Typically the OTS is used in Probe 2.

A twin tool setter application would require one of the OTS probes to be reconfigured to Probe 1.

A triple tool setter application would require one of the OTS probes to be reconfigured to Probe 1, and another to Probe 3.

Switch-off method

A timer automatically switches the probe off 90 minutes after the last trigger if not turned off by an M-code.

NOTE: After being switched on, the OTS must be on for 1 second minimum before being switched off.

Enhanced trigger filter

Probes subjected to high levels of vibration or shock loads may output signals without having contacted any surface. The enhanced trigger filter improves the probes resistance to these effects.

When the filter is enabled, a constant nominal 7 ms delay is introduced to the probe output.

It may be necessary to reduce the approach speed to allow for the increased stylus overtravel during the extended time delay.

The OTS is factory set to Enhanced trigger filter off.

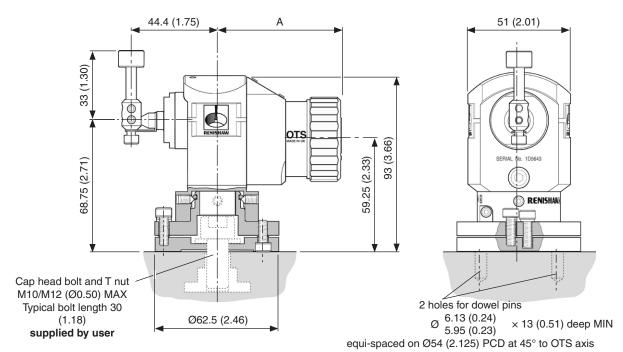
NOTE: Filter on is only compatible with on-centre length measurement. It should be turned off if measuring radius/diameter or length off-centre.

Optical power

Where the separation distance between the OTS and the receiver is small, low optical power or ultra low power may be selected (for more information, see **page 4-4**, "Changing the probe settings"). In these settings the optical transmission operating range will be reduced, as shown on the performance envelopes, so that battery life will be extended.

Ultra low power is recommended for any machine using the OMM-2C receiver or for use in small machining centers where the maximum separation distance between probe to receiver is less than 1.5 m (4.9 ft), for further increased battery life.

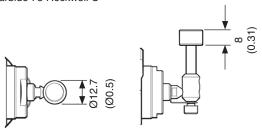
Low or ultra low optical power should be used whenever possible for increased battery life.


Dotted lines on the performance envelopes represent the OTS in switch-on / switch-off range.

Maximum battery life is achieved when lithium-thionyl chloride (LTC) batteries are used in conjunction with ultra low power mode.

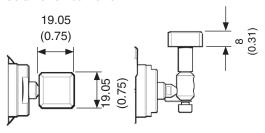
The OTS is factory set to standard optical power.

OTS dimensions

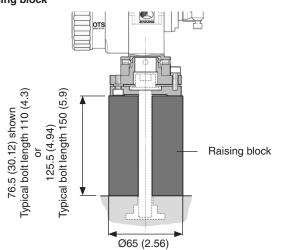


Stylus overtravel limits		
±X/±Y	+Z	
±3.5 (0.14)	6 (0.24)	

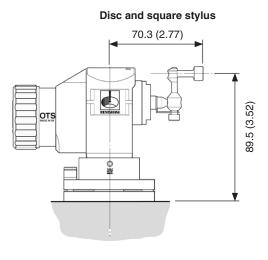
Battery type	Dimension A
½ AA	67.8 (2.67)
AA	92.5 (3.64)


Disc stylus

Ø12.7 mm \times 8 mm (Ø0.5 in \times 0.31 in) Tungsten carbide 75 Rockwell C



Square stylus


19.05 mm \times 19.05 mm (0.75 in \times 0.75 in) Ceramic 75 Rockwell C

Raising block

Cranked horizontal stylus adaptor kit

Dimensions given in mm (in)

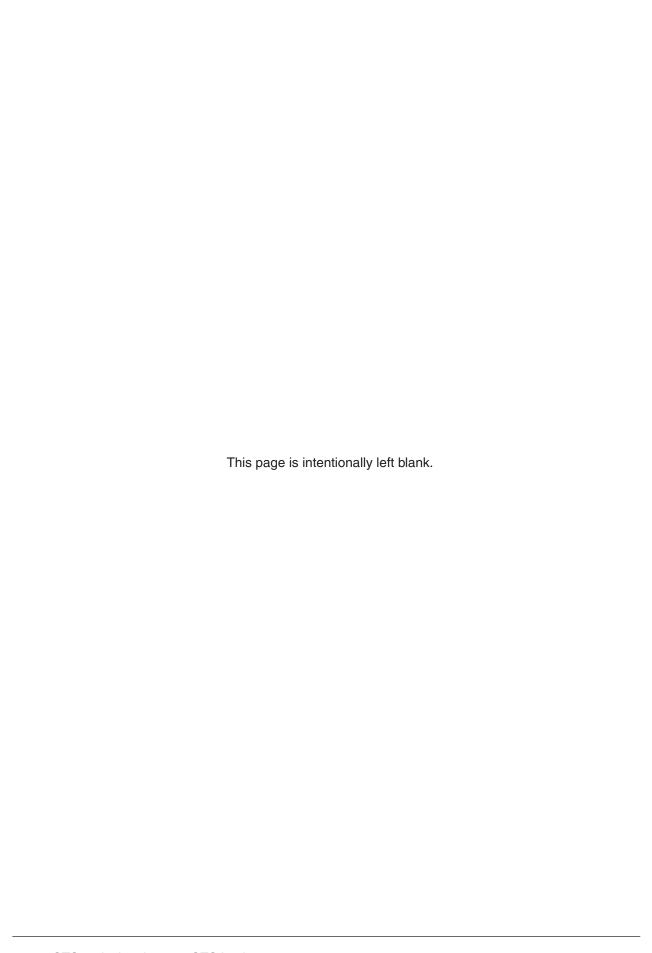
OTS specification

Variant		OTS (1/2AA)	OTS (AA)
Principal application		Tool measuring and broken tool detection on small to medium machining centres	
Dimensions	Length with disc stylus	118.55 mm (4.67 in) 143.55 mm (5.65 in)	
with disc stylus	Width	62.5 mm (2.46 in)	62.5 mm (2.46 in)
	Height	101.75 mm (4.00 in)	101.75 mm (4.00 in)
Weight with	With batteries	870 g (30.69 oz)	950 g (33.51 oz)
disc stylus	Without batteries	850 g (29.98 oz)	900 g (31.75 oz)
Transmission type		Infrared optical transmission (m	nodulated)
Compatible int	erfaces	OMI-2, OMI-2T, OMI-2H, OMI-2C or OMM-2 / OMM-2C with OSI / OSI-D	
Switch-on met	hod	Optical on	
Switch-off met	hods	Optical off or Timer off	
Operating rang	je	Up to 5 m (16.4 ft)	
Sense direction	ns	±X, ±Y, +Z	
Unidirectional	repeatability	1.0 μm (40 μin) 2σ ¹	
Stylus trigger f	force ²³	1.30 N to 2.40 N, 133 gf to 245 gf (4.68 ozf to 8.63 ozf) depending on the sense direction	
Stylus	XY plane	±3.5 mm (0.14 in)	
overtravel force	+Z plane	6 mm (0.24 in)	
Environment	IP rating	IPX8, BS EN 60529:1992+A2:2013	
	IK rating (typical)	IK01, BS EN 62262:2002+A1:2021 [for glass window]	
	Storage temperature	−25 °C to +70 °C (−13 °F to +158 °F)	
	Operating temperature	+5 °C to +55 °C (+41 °F to +131 °F)	
Battery types	½ AA type – standard	2 × ½AA 3.6 V lithium-thionyl chloride (LTC)	
	AA type – standard	2 × AA Alkaline	
	AA type – optional	2 × AA 3.6 V lithium-thionyl chloride (LTC)	
Low battery in	dication	Blue flashing LED in conjunction with normal red or green probe status LED	
Dead battery in	ndication	Constant red	
Typical battery	See the table on page 2-9		

Performance specification is tested at a standard test velocity of 480 mm/min (18.9 in/min) with a 35 mm stylus. Significantly higher velocity is possible depending on application requirements.

Trigger force, which is critical in some applications, is the force exerted on the stylus by the tool when the probe triggers. The maximum force applied will occur after the trigger point (overtravel). The force value depends on related variables including measuring speed, machine deceleration.

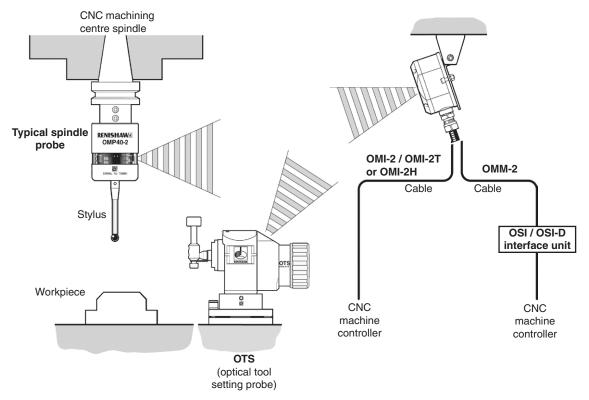
³ These are the factory settings: manual adjustment is not possible.



Typical battery life

Modulated transmission			
2 × ½AA 3.6 V LTC batteries (standard)	Standard power	Low power	Ultra low power
Standby life	1800 days	1800 days	1800 days
Light usage 1%	1300 days	1400 days	1500 days
Heavy usage 5%	600 days	750 days	850 days
Continuous use	1200 hours	1800 hours	2150 hours
2 × AA 1.5 V alkaline	Standard power	Low power	Ultra low power
batteries (standard)			
Standby life	3400 days	3400 days	3400 days
Light usage 1%	1900 days	2250 days	2350 days
Heavy usage 5%	700 days	900 days	1000 days
Continuous use	1000 hours	1550 hours	1800 hours
2 × AA 3.6 V LTC batteries	Standard power	Low power	Ultra low power
(optional)			
Standby life	4100 days	4100 days	4100 days
Light usage 1%	2900 days	3200 days	3300 days
Heavy usage 5%	1300 days	1650 days	1800 days
Continuous use	2750 hours	4050 hours	4750 hours

Lithium-thionyl chloride (LTC)


AA battery types are also designated as LR6 or MN1500

System installation

Typical probe system with OMI-2*, OMI-2T, OMI-2H interface, or OMM-2 receiver with OSI / OSI-D interface

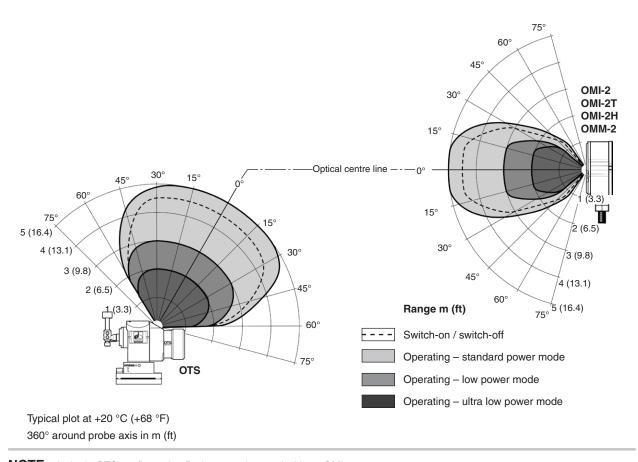
^{*} Single probe system only

Operating envelope

Natural reflective surfaces within the machine may change the signal transmission range.

Coolant residue accumulating on the OTS or OMI-2, OMI-2T, OMI-2H or OMM-2 windows will have a detrimental effect on transmission performance. Wipe clean as often as is necessary to maintain unrestricted transmission.

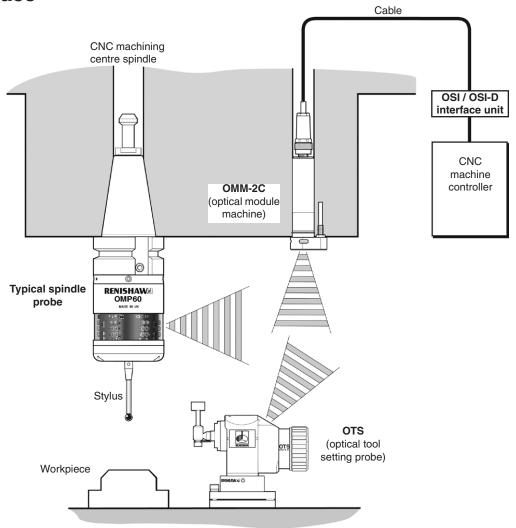
CAUTION: If two systems are operating in close proximity to each other, take care to ensure that signals transmitted from the OTS on one machine are not received by the receiver on the other machine, and vice versa. When this is the case it is recommended that the OTS low or ultra low optical power is used and that the low range setting is used on the receiver.


Positioning the OMI-2, OMI-2T, OMI-2H interface, or OMM-2 receiver

WARNING: Ensure the machine tool is in a safe condition and power is removed before removing covers. Only qualified persons should adjust switches.

To assist in finding the optimum position for the OMI-2, OMI-2T, OMI-2H interface or the OMM-2 receiver, signal condition is displayed on the OMI-2T, OMI-2H interface or the OMM-2 receiver multicoloured LED.

Performance envelope when using the OTS with OMI-2, OMI-2T, OMI-2H interface, or OMM-2 receiver


The diodes of the OTS and the OMI-2, OMI-2T, OMI-2H interface or the OMM-2 receiver must be in each other's field of view and within the performance envelope shown. The OTS performance envelope is based on the optical centre line of the OMI-2, OMI-2T, OMI-2H, OMM-2 being at 0° and vice versa.

NOTE: A single OTS configured to Probe 1 can be used with an OMI-2

Typical probe system with OMM-2C receiver with OSI / OSI-D interface

Operating envelope

Natural reflective surfaces within the machine may increase the signal transmission range.

For best system performance, ensure the OMM-2C is mounted in a position which is not directly in front of a light source.

Coolant and swarf residue accumulating on the windows of the OTS and OMM-2C will have a detrimental effect on transmission performance. Wipe clean as often as is necessary to maintain unrestricted transmission.

CAUTIONS:

If two systems are operating in close proximity to each other, take care to ensure that signals transmitted from the OTS on one machine are not received by the receiver on the other machine, and vice versa. When this is the case it is recommended that the OTS low or ultra low optical power is used and that the low range setting is used on the receiver.

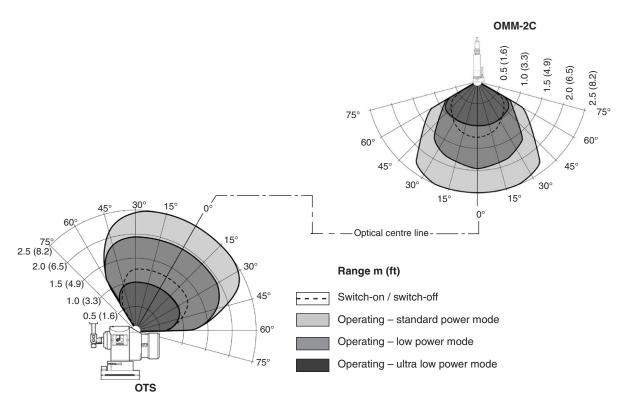
Make sure the sealing ring and air fitting screw (if applicable) are clean and lubricated prior to being mounted in the machine spindle

NOTE: Do not overtighten the mounting screw. Maximum torque is 1.5 Nm (1.11 lbf.ft.).

Positioning the OMM-2C receiver

WARNING: Ensure the machine tool is in a safe condition and power is removed before removing covers. Only qualified persons should adjust switches.

The OMM-2C should be mounted as near to the machine spindle as possible (as shown above)


When mounting the OMM-2C, it is important that the sealing ring forms a tight seal around the rim of the bore into which the body of the OMM-2C is to be located.

The probe system should be positioned so that the signal transmission is maintained when the OTS is positioned below the machine spindle.

In multiple probe mode applications, OTS may be configured as Probe 1, Probe 2 or Probe 3

Performance envelope when using the OTS with a OMM-2C receiver

The OTS and OMM-2C may deviate from the optical centre line, provided opposing light cones always overlap, with transmitters and receivers in the other's field of view (eye-to-eye).

Typical plot at +20 °C (+68 °F) 360° around probe axis in m (ft)

Preparing the OTS for use

Fitting the stylus, break stem and captive link

Stylus weak link break stem

A stylus weak link break stem is incorporated in the stylus mounting. This protects the probe mechanism from damage in the event of excessive stylus overtravel or a collision.

Captive link

In the event of the break stem breaking, the captive link ties the stylus to the probe, which prevents the stylus falling into the machine.

NOTE: Always hold the support bar in position to counteract twisting forces and avoid over-stressing the stylus break stem.

3

Installing the ½AA batteries

CAUTIONS: Remove the battery isolation device from the battery compartment before use.

NOTES:

If dead batteries are inadvertently inserted, the LED will remain a constant red.

Do not allow coolant or debris to enter the battery compartment.

When inserting batteries, check that the battery polarity is correct.

After the batteries have been inserted, the LED will display the current probe settings (for more information, see **page 4-2** "Reviewing the probe settings").


For more information and a list of suitable battery types, see page 5-2, "Changing the batteries".

1

2

Installing the AA batteries

NOTES:

If dead batteries are inadvertently inserted, the LED will remain a constant red.

Do not allow coolant or debris to enter the battery compartment.

When inserting batteries, check that the battery polarity is correct.

After the batteries have been inserted, the LED will display the current probe settings (for more information, see **page 4-2**, "Reviewing the probe settings").

For more information and a list of suitable battery types, see page 5-3, "Changing the batteries".

1

3

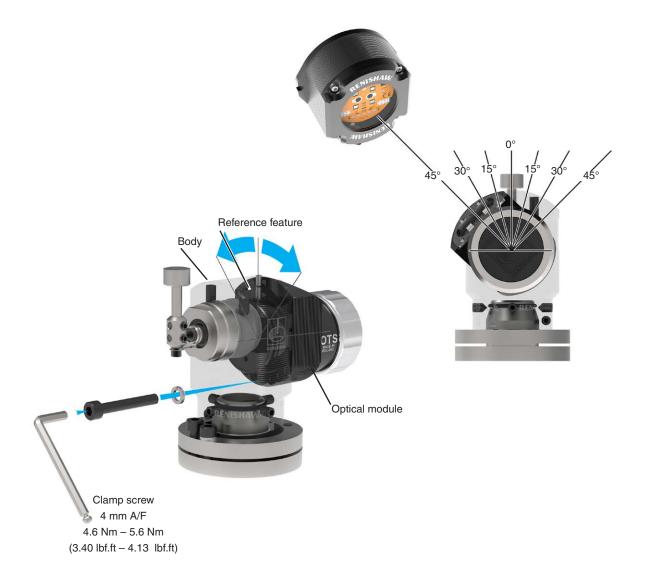
Mounting the OTS on a machine table

- 1. Select a position for the OTS on the machine table. Position to minimise the possibility of collision and ensure the radio window faces towards the receiver.
- 2. Separate the base from the body by slackening four screws 1 and two screws 2 using a 2.5 mm A/F hexagon key.
- 3. Fit the cap head bolt and T nut (not supplied by Renishaw) and tighten to secure the base to the machine table.

NOTE: A smaller washer should be fitted for a smaller bolt by disassembling and separating the base plates.

4. Refit the body onto the base and tighten screws 1 and 2.

NOTE: If a square stylus is fitted and fine rotational adjustment is required, see **page 3-12**, "Square stylus only", for further information.


Dowel pins (for more information, see page 2-7, "OTS dimensions").

Two locating pins (supplied in the tool kit) may be fitted on installations where there is a requirement to remove and remount the tool setter.

To fit the dowel pins, drill two holes in the machine table to correspond with the two probe base holes. Place the dowel pins in the holes and refit the probe base.

Aligning the modules

The optical module can be set in one of seven positions at 15° increments to allow the optical window to point towards the receiver.

- 1. To align the optical module, first slacken and partially pull out the clamp screw.
- 2. Rotate the optical module to line up a reference mark on the optical housing with the reference feature on top of the body.
- 3. Relocate the clamp screw and tighten.

Stylus level setting

The top surface of the stylus must be set level, front to back and side-to-side.

Side-to-side level adjustment

Side-to-side level adjustment is obtained by alternately adjusting grub screws 1, which causes the probe module to rotate and change the stylus level setting.

When a level stylus surface is obtained, tighten the grub screws 1.



Front-to-back level adjustment

To raise front

Slacken adjusting/locking screw 2 and adjust height adjusting screw 3 until the stylus is level.

Fully tighten screw 2.

To lower front

Slacken height adjusting screw 3 and adjusting/locking screw 2 until the stylus is level.

Fully tighten screw 3.

Square stylus only

Rotational adjustment allows the stylus to be aligned with the machine axes.

Coarse rotational adjustment

Slacken grub screw 1, rotate the stylus by hand to obtain alignment, then fully tighten the grub screw.

NOTE: Always hold the support bar in position to counteract twisting forces and avoid over-stressing the stylus break stem..

Fine rotational adjustment

Tighten the opposing grub screws 3 against a locating pin fixed to the base.

Alternately slacken and retighten these grub screws to achieve fine rotational adjustment of the stylus.

Lightly tighten the grub screws.

Fine rotational adjustment (continued)

Fully tighten the four body locking screws 2.

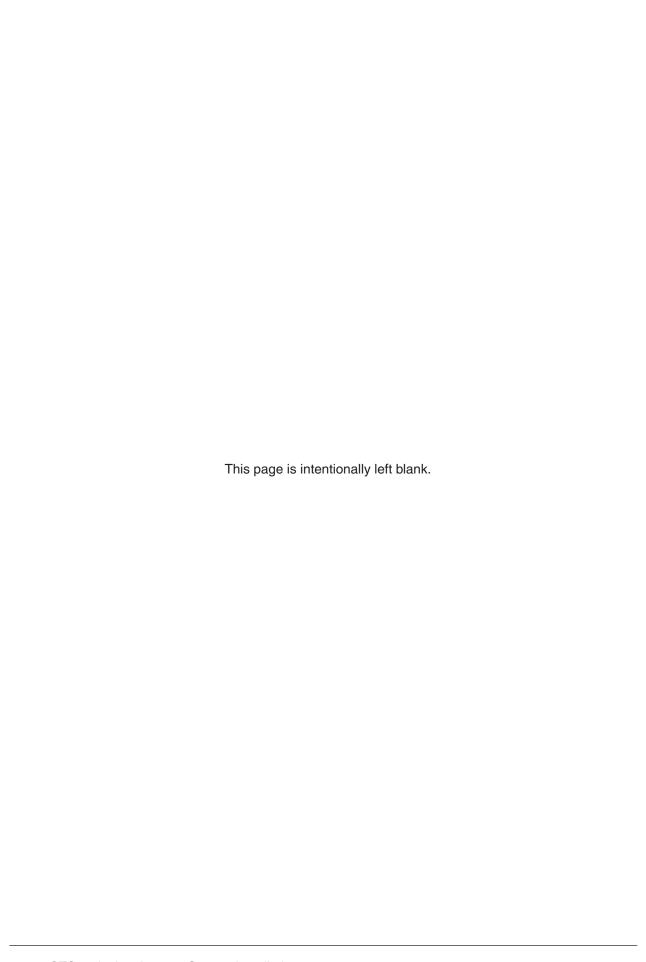
Calibrating the OTS

Why calibrate a probe?

A probe is just one component of the measurement system which communicates with the machine tool. Each part of the system can introduce a constant difference between the position that the stylus touches and the position that is reported to the machine. If the probe is not calibrated, this difference will appear as an inaccuracy in the measurement. Calibration of the probe allows the probing software to compensate for this difference.

During normal use, the difference between the touch position and the reported position does not change, but it is important that the probe is calibrated in the following circumstances:

- When a probe system is to be used for the first time;
- When a new stylus is fitted to the probe;
- When it is suspected that the stylus has become distorted or that the probe has been crashed;
- At regular intervals to compensate for mechanical changes of your machine tool.


When your probe is assembled and mounted on the machine table, it is necessary to align the stylus faces with the machine axes to avoid probing errors when setting tools. It is worth taking care with this operation - you should try to get the faces aligned to within 0.010 mm (0.0004 in) for normal use. This is achieved by manually adjusting the stylus with the adjusting screws provided, and using a suitable instrument such as a DTI clock mounted in the machine spindle.

When the probe has been correctly set up on the machine, the probe must be calibrated. Calibration cycles are available from Renishaw for this task. The purpose is to establish the probe stylus measuring face trigger point values under normal measuring conditions.

The calibration values are stored in macro variables for computation of the tool size during tool setting cycles.

Values obtained are axis trigger positions (in machine co-ordinates). Any errors due to machine and probe triggering characteristics are automatically calibrated out in this way. These values are the electronic trigger positions under dynamic operating conditions, and not necessarily the true physical stylus face positions.

NOTE: Poor repeatability of probe trigger point values indicates that either the probe/stylus assembly is loose or a machine/probe fault exists. Further investigation is required.

Probe configuration

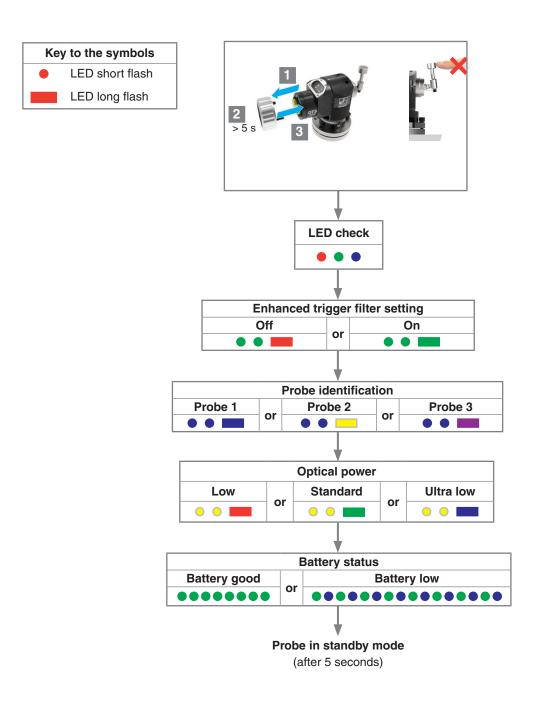
Configuring the probe using the Probe Setup app

The Probe Setup app simplifies the process of configuring Renishaw machine tool probes compatible with Opti-Logic™ or Trigger Logic™.

The app provides clear, step-by-step, visual instructions and video tutorials to guide a user through the process of setting up and configuring a Renishaw machine tool probing system.

Using Opti-Logic™

Opti-LogicTM is the process of transmitting and receiving data from the app to a Renishaw machine tool probe using pulses of light. The app will ask for the probe version to be entered. The probe version is displayed inside the battery compartment which is visible when the battery cap is removed.


The Probe Setup app is available for download on the App Store and Google Play and several app stores in China.

Using Trigger Logic™

Reviewing the probe settings

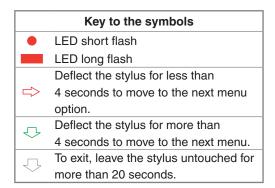
Probe settings record

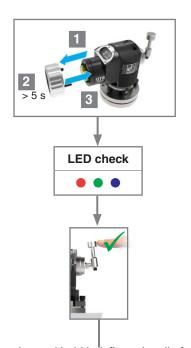
A-5514-2001 A-5514-2011

This page is provided to note your probes settings.

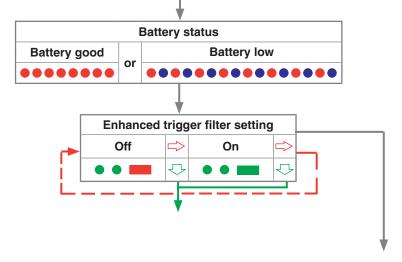
			√ tick	
			Factory settings	New settings
Enhanced trigger filter	Off	• • =	√	
	On	• • •		
Probe identification	Probe 1	• • =		
	Probe 2	• • -	√	
	Probe 3	• • 💻		
Optical power	Low	• • \blacksquare		
	Standard	• • -	√	
	Ultra low	• • 🖿		

Factory settings are for kits:-	OTS serial no
\-5401-2001	
N_5401_2011	

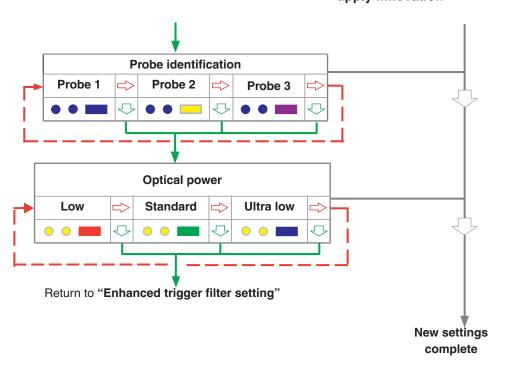

Changing the probe settings


Insert the batteries or, if they have already been installed, remove them for five seconds and then refit them.

Following the LED check, immediately deflect the stylus and hold it deflected until eight red flashes have been observed (if the battery power is low, each red flash will be followed by a blue flash).


Keep the stylus deflected until the "Enhanced trigger filter" setting is displayed, then release it. The probe is now in configuration mode and Trigger Logic™ is activated.

CAUTION: Do not remove the batteries whilst in configuration mode. To exit, leave the stylus untouched for more than 20 seconds.



Deflect the stylus and hold it deflected until after the battery status has been displayed at the end of the review sequence.

Master reset function

OTS features a master reset function to assist users who have mistakenly changed the probe settings into an unintended state.

The application of the master reset function will clear all current probe settings and return the probe to default settings.

The default settings are as follows:

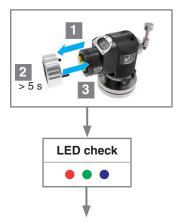
- Enhanced trigger filter off
- Modulated Probe 2
- Standard optical power

The default settings may not be representative of the required probe settings. Further configuration of OTS may subsequently be necessary to achieve the required probe settings.

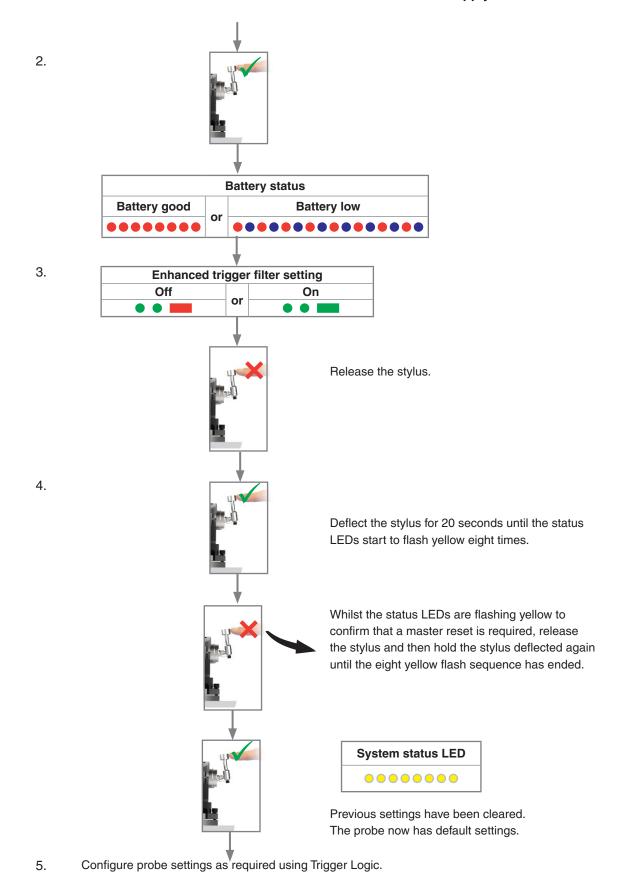
To reset the probe

1. Insert the batteries or, if they have already been installed, remove them for 5 seconds and then refit them.

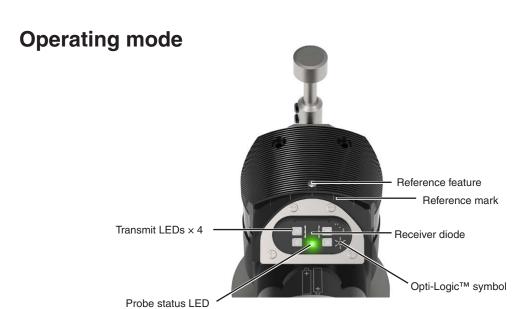
Following the LED check, immediately deflect the stylus and hold it deflected until eight red flashes have been observed (if the battery power is low, each red flash will be followed by a blue flash).


Keep the stylus deflected until the "Enhanced trigger filter" setting is displayed, then release it.

2. Hold the stylus deflected for 20 seconds. After this the status LEDs will proceed to flash yellow eight times. A confirmation for master reset is required, if nothing is done the probe will timeout.


To confirm that a master reset is required, release the stylus and then hold the stylus deflected again until the eight yellow flash sequence has ended. This action will clear all probe settings and return the probe to default settings. Following an LED check the OTS will then go back into Trigger Logic and will display "Enhanced trigger filter".

3. Further configuration using Trigger Logic may be necessary to achieve the required probe settings.



www.renishaw.com/ots

Probe status LED

LED colour	Probe status	Graphic hint
Flashing green	Probe seated in operating mode	• • •
Flashing red	Probe triggered in operating mode	• • •
Flashing green and blue	Probe seated in operating mode – low battery	•••••
Flashing red and blue	Probe triggered in operating mode – low battery	•••••
Constant red	Battery dead	
Flashing red or		•••••
Flashing red and green or	Unsuitable battery	
Sequence when batteries are inserted		••••

NOTE: Due to the nature of lithium-thionyl chloride batteries, if a "low battery" LED warning is ignored, it is possible for the following sequence of events to occur:

- 1. When the probe is active, the batteries discharge until battery power becomes too low for the probe to operate correctly.
- 2. The probe stops functioning, then reactivates as the batteries recover sufficiently to provide the probe with power.
- 3. The probe begins to run through the LED review sequence (see **page 4-2**, "Reviewing the probe settings", for further information).
- 4. Again, the batteries discharge and the probe ceases to function.
- 5. Again, the batteries recover sufficiently to provide the probe with power, and the sequence repeats itself.

Maintenance

Maintenance

You may undertake the maintenance routines described in these instructions.

Further dismantling and repair of Renishaw equipment is a highly specialised operation, which must be carried out at an authorised Renishaw Service Centre.

Equipment requiring repair, overhaul or attention under warranty should be returned to your supplier.

Cleaning the probe

Wipe the window of the probe with a clean cloth to remove machining residue. This should be done on a regular basis to maintain optimum transmission.

CAUTION: The OTS has a glass window. Handle with care if broken to avoid injury.

Changing the ½AA batteries

CAUTIONS:

Do not leave dead batteries in the probe.

When changing batteries, do not allow coolant or debris to enter the battery compartment.

When changing batteries, check that the battery polarity is correct.

Take care to avoid damaging the battery cassette gasket.

Only use specified batteries.

Dispose of dead batteries in accordance with local regulations. Never dispose of batteries in a fire.

NOTES:

After removing the old batteries, wait more than 5 seconds before inserting the new batteries.

Do not mix new and used batteries or battery types, as this will result in reduced life and damage to the batteries.

Always ensure that the cassette gasket and mating surfaces are clean and free from dirt before reassembly.

If dead batteries are inadvertently inserted, the LED will remain a constant red.

Changing the AA batteries

CAUTIONS:

Do not leave dead batteries in the probe.

When changing batteries, do not allow coolant or debris to enter the battery compartment.

When changing batteries, check that the battery polarity is correct.

Take care to avoid damaging the battery cassette gasket.

Only use specified batteries.

Dispose of dead batteries in accordance with local regulations. Never dispose of batteries in a fire.

NOTES:

After removing the old batteries, wait more than 5 seconds before inserting the new batteries.

Do not mix new and used batteries or battery types, as this will result in reduced life and damage to the batteries.

Always ensure that the cassette gasket and mating surfaces are clean and free from dirt before reassembly.

If dead batteries are inadvertently inserted, the LED will remain a constant red.

Battery types

1/2 AA lithium-thionyl chloride (3.6 V) × 2 supplied with probe

 \checkmark

Saft: Tadiran: Xeno: LS 14250 SL-750 XL-050F

×

Dubilier: SB-AA02 Maxell: ER3S

 Sanyo:
 CR 14250SE

 Tadiran:
 SL-350, SL-550,

TL-4902, TL-5902, TL-2150, TL-5101

Varta: CR ½AA

* AA Alkaline (1.5 V) × 2 supplied with probe

All AA alkaline batteries

AA lithium-thionyl chloride $(3.6 \text{ V}) \times 2$ (optional type)

 Saft:
 LS14500

 Tadiran:
 SL-760/S

 TL-5903/S

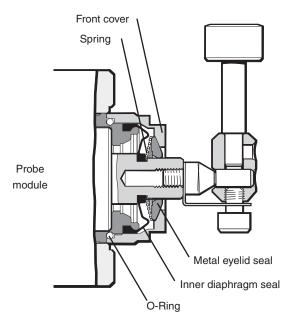
Saft: XL-060F

NOTE: Maximum battery life is achieved when lithium-thionyl chloride batteries are used.

^{*} AA battery types are also designated as LR6 or MN1500.

Routine maintenance

The probe is a precision tool and must be handled with care.


Ensure the probe is firmly secured to its mounting.

The probe requires minimal maintenance as it is designed to operate as a permanent fixture on CNC machining centres, where it is subject to a hot chip and coolant environment.

- Do not allow excessive waste material to build up around the probe.
- Coolant residue accumulating on the transmission window will have a detrimental effect on transmission performance (see **page 5-1**, "Cleaning the probe", for further information).
- Keep all electrical connections clean.
- The probe mechanism is protected by an outer metal eyelid seal and an inner flexible diaphragm seal.

Approximately once a month, inspect the probe inner diaphragm seal (see **page 5-6**, "Eyelid removal/replacement", for further information). If it is pierced or damaged, contact Renishaw.

The service interval may be extended or reduced depending on usage and operating environment.

Eyelid removal/replacement

- 1. Remove the stylus/break stem assembly using the 5 mm A/F spanner.
- 2. Use a 24 mm or 15/16 in spanner to remove the probes front cover. This will expose the metal eyelid seal, spring and inner diaphragm seal. Remove the metal eyelid and spring.

CAUTION: The eyelid and spring may fall out.

3. Wash inside the probe using clean coolant.

CAUTION: Do not use sharp objects to clean out debris.

- 4. Inspect the diaphragm seal for signs of piercing or damage. In the event of damage, return the probe to your supplier for repair, as coolant entering the probe mechanism could cause the probe to fail.
- 5. Refit the spring and metal eyelid (the springs largest diameter is against the metal eyelid).
- 6. Refit the remaining components.

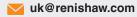
Fault-finding

Symptom	Cause	Action
The probe fails to power	Dead batteries.	Change batteries.
up (LED not illuminated	Unsuitable batteries.	Fit suitable batteries.
or fails to indicate	Batteries inserted incorrectly.	Check battery insertion/polarity.
current probe settings).	Batteries removed for too short a	Remove batteries for a minimum of
	time and probe has not reset.	5 seconds.
	Poor connection between battery	Remove any dirt and clean the
	cassette mating surfaces and	contacts before reassembly.
	contacts.	
The probe fails to switch	Wrong optical start configuration	Reconfigure.
on.	selected.	
	Dead batteries.	Change batteries.
	Unsuitable batteries.	Fit suitable batteries.
	Batteries inserted incorrectly.	Check battery insertion/polarity.
	Optical/magnetic interference.	Check for interfering lights or motors.
		Consider removing interfering source.
	Transmission beam obstructed.	Check that the probe receiver windows are clean and remove any obstruction.
	No receiver start signal.	Refer to relevant installation guide. Review installation wiring.
	Probe out of range/not aligned with receiver.	Check alignment and if receiver fixing is secure.
Probe switches-on	Probe receiving switch-on signal	Reduce switch-on range on receiver
unexpectedly.	from receiver on adjacent machine.	on adjacent machine.
Machine stops unexpectedly during a	Optical communication obstructed.	Check interface / receiver and remove obstruction.
probing cycle.	Interface / receiver / machine fault.	Refer to receiver / machine installation guide.
	Dead batteries.	Change batteries.
	False probe trigger.	Enable enhanced trigger filter.
	Probe unable to find target surface.	Check that part is correctly positioned and that stylus has not broken.
	Adjacent probe.	Reconfigure adjacent probe to a lower power mode and reduce range of receiver.
The probe crashes.	Tool length offset incorrect.	Review offsets.
	Controller wired to respond to inspection probe instead of tool setter.	Review installation wiring.

Symptom	Cause	Action
Poor probe repeatability	Debris on part or stylus.	Clean part and stylus.
and/or accuracy.	Loose probe mounting on machine bed or loose stylus.	Check and tighten as appropriate.
	Excessive machine vibration.	Enable enhanced trigger filter.
		Eliminate vibrations.
	Calibration out of date and/or incorrect offsets.	Review probing software.
	Calibration and probing speeds not the same.	Review probing software and make speeds the same.
	Measurement occurs as stylus leaves surface.	Review probing software.
	Measurement occurs within the machine's acceleration and deceleration zone.	Review probing software and probe filter settings.
	Probing speed too high or too low.	Perform simple repeatability trials at various speeds.
	Temperature variation causes machine and workpiece movement.	Minimise temperature changes.
	Machine tool faulty.	Perform health checks on machine tool.
Probe fails to switch off.	Optical/magnetic interference.	Check for interfering lights or motors.
		Consider removing the interfering source.
		Check that the probe and receiver windows are clean, and remove any obstruction.
	Probe out of range.	Check position of receiver.
		Increase receiver signal start range.
		Review performance envelopes.
Probe goes into Trigger	Probe was triggered when batteries	Do not touch the stylus or stylus
Logic™ configuration	were inserted.	mounting face during battery
mode and cannot be		insertion.
reset.		

Parts list

Туре	Part number	Description
OTS (½ AA)	A-5401-2001	OTS probe with disc stylus, ½ AA lithium-thionyl chloride batteries, tool kit and support card. Set to: optical on / optical off / filter off / Probe 2 start / standard power.
OTS (½ AA)	A-5401-2011	OTS probe with square stylus, ½ AA lithium-thionyl chloride batteries, tool kit and support card. Set to: optical on / optical off / filter off / Probe 2 start / standard power.
OTS (AA)	A-5514-2001	OTS probe with disc stylus, AA alkaline batteries, tool kit and support card. Set to: optical on / optical off / filter off / Probe 2 start / standard power.
OTS (AA)	A-5514-2011	OTS probe with square stylus, AA alkaline batteries, tool kit and support card. Set to: optical on / optical off / filter off / Probe 2 start / standard power.
½AA batteries	P-BT03-0007	½AA battery – lithium-thionyl chloride – supplied as standard with probe (pack of two).
AA batteries	P-BT03-0005	AA battery – alkaline – supplied as standard with probe (two required).
AA batteries	P-BT03-0008	AA battery – lithium-thionyl chloride (two required).
Disc stylus	A-2008-0382	Disc stylus (tungsten carbide, 75 Rockwell C) Ø12.7 mm (Ø0.5 in).
Square stylus	A-2008-0384	Square tip stylus (ceramic tip, 75 Rockwell C) 19.05 mm \times 19.05 mm (0.75 in \times 0.75 in).
Break stem	A-5003-5171	Stylus protection kit comprising: break stem (\times 1), captive link (\times 1), support bar (\times 1), M4 screw (\times 2), M4 grubscrew (\times 3), hexagon keys: 2.0 mm (\times 1), 3.0 mm (\times 1) and spanner 5.0 mm (\times 1).
Stylus holder kit	A-2008-0389	Stylus holder kit comprising stylus holder and screws.
Battery cap	A-5401-0301	OTS battery cap assembly.
Seal	A-4038-0301	Battery housing seal.
Tools	A-5401-0300	Comprising: break stem (\times 1), captive link (\times 2), support bar (\times 1), M4 screw (\times 2), M4 grub screw (\times 3), spirol pin (\times 2), hexagon keys: 2.0 mm A/F (\times 1), 2.5 mm A/F (\times 1), 3.0 mm A/F (\times 1), 4.0 mm A/F (\times 1) and spanner 5.0 mm A/F (\times 1).
OMI-2	A-5191-0049	OMI-2 complete with cable 8 m (26.25 ft) long, tool kit and support card.
OMI-2	A-5191-0050	OMI-2 complete with cable 15 m (49 ft) long, tool kit and support card.
OMI-2T	A-5439-0049	OMI-2T complete with cable 8 m (26.25 ft) long, tool kit and support card.
OMI-2T	A-5439-0050	OMI-2T complete with cable 15 m (49 ft) long, tool kit and support card.
OMM-2	A-5492-0049	OMM-2 complete with cable 8 m (26.25 ft) long, tool kit and support card.
OMM-2	A-5492-0050	OMM-2 complete with cable 15 m (49 ft) tool kit and support card.


Туре	Part number	Description
OMM-2C	A-5991-0001	OMM-2C (standard non-integrated airblast) with 7-way socket and support card.
OMM-2C	A-5991-0005	OMM-2C (integrated airblast) with 7-way socket and support card.
OSI interface	A-5492-2000	OSI (multiple probe mode) with DIN rail mounting, terminal block and support card.
OSI interface	A-5492-2010	OSI (single probe mode) with DIN rail mounting, terminal block and support card.
OSI-D interface	A-5492-3000	OSI-D (multiple probe mode) with DIN rail mounting, terminal block and support card.
OSI-D interface	A-5492-3010	OSI-D (single probe mode) with DIN rail mounting, terminal block and support card.
Mounting bracket	A-2033-0830	OMI-2T / OMI-2H / OMI-2 mounting bracket with fixing screws, washers and nuts.
Raising block	M-2033-7347	Raising block Ø65 mm (Ø2.55 in) × 76.5 mm (3.0 in) tall.
Raising block	M-2033-7189	Raising block Ø65 mm (Ø2.55 in) × 125.5 mm (4.94 in) tall.
Stylus adaptor	A-2008-0448	Adaptor kit to position stylus in horizontal attitude.
Publications. These can be downloaded from our website at www.renishaw.com		
OMI-2	H-5191-8504	Installation guide: for set-up of the OMI-2.
OMI-2T	H-5439-8510	Installation guide: for set-up of the OMI-2T.
OSI/OSI-D with OMM-2	H-5492-8504	Installation guide: for set-up of the OSI/OSI-D interface with OMM-2.
OSI/OSI-D with OMM-2C	H-5991-8504	Installation guide: for set-up of the OSI/OSI-D interface with OMM-2C.
Styli	H-1000-3200	Technical specifications: <i>Styli and accessories</i> – or visit our Online store at www.renishaw.com/shop .
Probe software	H-2000-2298	Data sheet: Probe software for machine tools – programs and features.

www.renishaw.com/ots

© 2008–2024 Renishaw plc. All rights reserved. This document may not be copied or reproduced in whole or in part, or transferred to any other media or language by any means, without the prior written permission of Renishaw. RENISHAW® and the probe symbol are registered trade marks of Renishaw plc. Renishaw product names, designations and the mark 'apply innovation' are trade marks of Renishaw plc or its subsidiaries. Other brand, product or company names are trade marks of their

respective owners.

WHILE CONSIDERABLE EFFORT WAS MADE TO VERIFY THE ACCURACY OF THIS DOCUMENT AT PUBLICATION, ALL WARRANTIES, CONDITIONS, REPRESENTATIONS AND LIABILITY, HOWSOEVER ARISING, ARE EXCLUDED TO THE EXTENT PERMITTED BY LAW. RENISHAW RESERVES THE RIGHT TO MAKE CHANGES TO THIS DOCUMENT AND TO THE EQUIPMENT, AND/OR SOFTWARE AND THE SPECIFICATION DESCRIBED HEREIN WITHOUT OBLIGATION TO PROVIDE NOTICE OF SUCH CHANGES.

Renishaw pic. Registered in England and Wales. Company no: 1106260. Registered office: New Mills, Wotton-under-Edge, Glos, GL12 8JR, UK.

Part no.: H-5514-8504-05-A

Issued: 11.2024